

CloudTran V2 – MVCC and Transactional Replication

Previously on Coherence we’ve supported TopLink Grid and a cache-level API with Pessimistic
Locking. For the 2.0 release, we’ve added two major new features to CloudTran – while continuing
to support the previous features.

First, MVCC (Multi-Version Concurrency Control) is added as an alternative to Pessimistic
Locking on the cache-level API. It supports:

-­‐ consistent reads across multiple distributed cache entries or services. This effectively gives a
snapshot, with all the values being consistent with the time the reading transaction started. For
example, if you start a transaction at 9:01 and you want to read the price of an item which was
updated at 9:00 and 9:02, you will get the 9:00 price – being the correct value as of 9:01.

-­‐ multiple simultaneous updates. If you want to calculate a new price and note it as “the current
price” regardless of whether other threads are also calculating the price, then you can turn off
update checking – so the price can be continuously updated, using a consistent snapshot of
input values for each calculation.

-­‐ non-conflicting updates. You can specify write conflict checking – i.e. no intervening write can
have occurred on any cache entry changed in a transaction. You can also do the same, but for
any entry read by the transaction as well; this is the MVCC equivalent of pessimistic locking
and prevents a “write skew anomaly”.

Second, CloudTran 2.0 introduces transactional replication between data centers. The key here is
“transactional” across multiple cache entries (in different partitions); if you don’t need this, the
Coherence push replicator or GoldenGate will make more sense depending on your system of
reference.

By doing transactional replication, you know that the secondary grid will be consistent – updates
are done atomically – so if the primary grid goes down, you can switch over to the secondary grid
immediately the outage is detected.

One of the big issues in replication is the time to send to the other data center, which is typically
100ms or more. It doesn’t make sense in a grid environment to wait that long, so what the
CloudTran replicator does is to save the transactions to SSD at the sending data centre, and then
relays them to the other grid while the transaction carries on locally.

Writing to SSDs only takes 13µs from our Java code, which is likely to be acceptable in most
applications – to get the benefit of knowing the transaction will be replicated eventually (even if the
replicator node or data centre goes down). The replicator supports failover and dual-ported SSD
drives, avoiding a single point of failure – it’s like a message appliance, but built on Coherence.

